
Four facts about Tensor Product Representations
(TPRs)

Paul Smolensky

Cognitive Science Dept
Johns Hopkins University

Deep Learning Group
Microsoft Research, Redmond

(Fall 2015)

NIPS Workshop — Cognitive Computation:	 Dec. 12,
Integrating Neural and Symbolic Approaches 	 2015

What’s the proper relationship for such an integration?

Have: a coarse-grained ‘macro’ theory — symbolic computation
• which has many successes
• is running up against its limits states of the mind are collections

of referring symbols assembled
into combinatorial structures that

are governed by the variable-
containing well-formedness
constraints of a ‘grammar’

Neural-symbolic integration

2

Cognition, linguistics,
neuroscience

What’s the proper relationship for such an integration?

Have: a coarse-grained ‘macro’ theory — symbolic computation
• which has many successes
• is running up against its limits

Want: a more fine-grained ‘micro’ theory
— neural computation
• which will enable us to surpass

the limits of the existing theory
• without losing all of its successes

Emulate physics: mechanics

Neural-symbolic integration

3

state = vector ∈Rn

state transitions: continuous (esp.
quasi-linear) dynamical system

semantics: distributed
representations (activity vectors,

not units, have conceptual
interpretation)

there is a challenging gap between
symbolic & neural computation

From mechanics to cognition

4

Scale

↑

θ

↓

quantum
systems

isomorphic
to classical
mechanics

⤶

0 — ℏ–1 → ∞

Speed, mass

↑

θ

↓

relativistic
 systems

isomorphic
to classical
mechanics

⤶

0 — c → ∞

Numerosity

↑

θ

↓

statistical-
mechanical

systems

isomorphic
to thermo-
dynamics

⤶

0 — N → ∞

Discreteness

↑

θ

↓

space of NNs
≡ {N(θ,σ)}

≡ ℋ

isomorphic
to symbolic
computation

⤶

0 — σ → ∞

Want: a general NN architecture ℋ which
• converges to symbolic computation in the limit of some

discreteness hyperparameter vector σ → ∞, e.g.:
➤ dimensionality of activation vectors (|NN|) encoding symbols → ∞
➤ similarity–1 of activation vectors encoding symbols structures → ∞
➤ non-randomness T–1 → ∞
➤ processing time → ∞

• can improve upon
symbolic cognitive theory
➤ w.r.t. ‘macro data’
➤ w.r.t. ‘micro data’

☞	As a hypothesis space ℋ for
learning, can always do at
least as well as symbolic
theory: can choose σ → ∞

From mechanics to cognition

5

Discreteness

↑

θ

↓

space of NNs
≡ {N(θ,σ)}

≡ ℋ

isomorphic
to symbolic
computation

⤶

0 — σ → ∞

Want: a general NN architecture ℋ which
• converges to symbolic computation in the limit of some

discreteness hyperparameter vector σ → ∞, e.g.:
➤ dimensionality of activation vectors (|NN|) encoding symbols → ∞
➤ similarity–1 of activation vectors encoding symbols structures → ∞
➤ non-randomness T–1 → ∞
➤ processing time → ∞

• can improve upon
symbolic cognitive theory
➤ w.r.t. ‘macro data’
➤ w.r.t. ‘micro data’

☞	As a hypothesis space ℋ for
learning, can always do at
least as well as symbolic
theory: can choose σ → ∞

From mechanics to cognition

6

Discreteness

↑

θ

↓

space of NNs
≡ {N(θ,σ)}

≡ ℋ

isomorphic
to symbolic
computation

⤶

0 — σ → ∞

☞
ℋ built on Tensor Product
Representations (TPRs) ⇒
can program (not yet learn)
symbolic computations

4 facts about Tensor Product Representations (TPRs)

1. Not larger
• In cognitive models examined to date, (noisy) alternative schemes

utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives
• Known proposed solutions to the problem of encoding symbol

structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing
• … can be carried out on fully distributed TPRs via multilinear

operations.

4. Grammatical competence
• The competence to generate binary trees that are grammatical

according to a given Harmonic Grammar is implementable in fully
parallel, fully distributed recurrent networks.

7

TPR size: Myth & reality

8

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

Marcus
 2001

Eliasmith
 2013

630
2040

7280

1.25E+08

2.43E+07

Published estimate
Reality
Minimal

Vector
dimension

>3 error: orders
of magnitude>4 >4½

Error (?):
Assuming
TPRs are
assembled
identically to
alternatives

role dim = 3
role dim = 2

So what approach do Marcus
and Eliasmith favor?

9

z = x!y z,x,y ∈IRd

z
λ

= T
λαβ

x
α
y

βαβ∑ = [T
µ1µ2µ3

x
µ4

y
µ5

]
µ2µ4

∑ δ
µ2µ4

δ
µ3µ5

= [T⊗ x⊗y]
µ1µ2µ3 µ4 µ5αβ∑ δ

µ2µ4
δ

µ3µ5

z(1) = C
24,35

T(3) ⊗ x(1) ⊗ y(1){ }
T
λαβ

=
1 if λ=α+β (mod d)
0 otherwise

⎧
⎨
⎪

⎩⎪

10

7 Symbolic Computation with Activation Patterns 259

Section 6.2 (31)

(28) Circular convolution: z = x Ր y

y0 x0y0 x1y0 x2y0 z0

y1 x0y1 x1y1 x2y1 z1

y2 x0y2 x1y2 + x2y2 z2

y0 x0y0 + x1y0 + x2y0

y1 x0y1 + x1y1 + x2y1

y2 x0y2 + x1y2 x2y2

� x0 x1 x2

The box encloses the ordinary tensor product y � x; for reasons soon to be apparent,
it is convenient here to take 0 rather than 1 as the lowest index value. If we imagine
the vertical axis to be closed into a circle, we would have y0 y1 y2 y0 y1 y2 y0 ֥; this is
shown in (28) by displaying y a second time, in lighter type. Adding three elements
from the tensor product along the indicated diagonals gives the three numbers z0, z1,
z2 constituting z, the circular convolution of x and y, written x Ր y. The indices are de-
termined by this condition: the three terms xǂyǃ that are added together to form zǌ
are exactly those for which ǌ is the value of ǂ + ǃ (mod 3). The value of ǂ + ǃ (mod 3)
is just the remainder of ǂ + ǃ when it is divided by 3: either 0, 1, or 2. (Arithmetic
modulo n is a kind of “circular” arithmetic—hence the name ‘circular convolution’.)
Thus, for example, when ǌ = 1, the three pairs (ǂ, ǃ) for which ǌ = ǂ + ǃ (mod 3) are
(0, 1), (1, 0), and (2, 2); thus, z1 is the sum of the three xǂyǃ terms x0y1, x1y0, and x2y2.

 In HRRs, circular convolution is used to bind filler vectors to role vectors. The
key point is that the binding vector has the same number of elements as the vectors being
bound. With basic tensor product binding, of course, this is not true: the binding vec-
tor has n2 elements if each vector being bound has n elements.

 Circular convolution is defined in general as follows. Let x and y be vectors each
with n elements. Then z = x Ր y is the vector with the following n elements:

(29) zǌ = ƴǂǃ Tǌǂǃxǂyǃ,
where

(30) ODE O D�E
O D �E

{ G ®
¯

()
,

1 if (mod)
T

0 otherwise
n n

.

For a given ǌ, multiplying each product xǂyǃ by the corresponding Tǌǂǃ wipes out all
terms except those for which ǌ = ǂ + ǃ (mod n), so summing Tǌǂǃxǂyǃ over all ǂ and ǃ
pulls out just those terms in the tensor product x � y that add together to form the
component zǌ of the circular convolution vector z = x Ր y.

 To see the contraction structure of circular convolution, we can rewrite (29):

(31) zǌ = ƴǂǃ Tǌǂǃxǂyǃ = ƴǂµ ƴǃǋǅǂµǅǃǋTǌµǋxǂyǃ.
In the final expression in (31), the indices ǂ and ǃ of T have been replaced by µ and ǋ,
with Kronecker deltas ǅǂµ and ǅǃǋ inserted so that the sums over µ and ǋ will pick out

Plate 1991: Holographic Reduced Representations (HRRs)

tensor product x⊗y

7 Symbolic Computation with Activation Patterns 259

Section 6.2 (31)

(28) Circular convolution: z = x Ր y

y0 x0y0 x1y0 x2y0 z0

y1 x0y1 x1y1 x2y1 z1

y2 x0y2 x1y2 + x2y2 z2

y0 x0y0 + x1y0 + x2y0

y1 x0y1 + x1y1 + x2y1

y2 x0y2 + x1y2 x2y2

� x0 x1 x2

The box encloses the ordinary tensor product y � x; for reasons soon to be apparent,
it is convenient here to take 0 rather than 1 as the lowest index value. If we imagine
the vertical axis to be closed into a circle, we would have y0 y1 y2 y0 y1 y2 y0 ֥; this is
shown in (28) by displaying y a second time, in lighter type. Adding three elements
from the tensor product along the indicated diagonals gives the three numbers z0, z1,
z2 constituting z, the circular convolution of x and y, written x Ր y. The indices are de-
termined by this condition: the three terms xǂyǃ that are added together to form zǌ
are exactly those for which ǌ is the value of ǂ + ǃ (mod 3). The value of ǂ + ǃ (mod 3)
is just the remainder of ǂ + ǃ when it is divided by 3: either 0, 1, or 2. (Arithmetic
modulo n is a kind of “circular” arithmetic—hence the name ‘circular convolution’.)
Thus, for example, when ǌ = 1, the three pairs (ǂ, ǃ) for which ǌ = ǂ + ǃ (mod 3) are
(0, 1), (1, 0), and (2, 2); thus, z1 is the sum of the three xǂyǃ terms x0y1, x1y0, and x2y2.

 In HRRs, circular convolution is used to bind filler vectors to role vectors. The
key point is that the binding vector has the same number of elements as the vectors being
bound. With basic tensor product binding, of course, this is not true: the binding vec-
tor has n2 elements if each vector being bound has n elements.

 Circular convolution is defined in general as follows. Let x and y be vectors each
with n elements. Then z = x Ր y is the vector with the following n elements:

(29) zǌ = ƴǂǃ Tǌǂǃxǂyǃ,
where

(30) ODE O D�E
O D �E

{ G ®
¯

()
,

1 if (mod)
T

0 otherwise
n n

.

For a given ǌ, multiplying each product xǂyǃ by the corresponding Tǌǂǃ wipes out all
terms except those for which ǌ = ǂ + ǃ (mod n), so summing Tǌǂǃxǂyǃ over all ǂ and ǃ
pulls out just those terms in the tensor product x � y that add together to form the
component zǌ of the circular convolution vector z = x Ր y.

 To see the contraction structure of circular convolution, we can rewrite (29):

(31) zǌ = ƴǂǃ Tǌǂǃxǂyǃ = ƴǂµ ƴǃǋǅǂµǅǃǋTǌµǋxǂyǃ.
In the final expression in (31), the indices ǂ and ǃ of T have been replaced by µ and ǋ,
with Kronecker deltas ǅǂµ and ǅǃǋ inserted so that the sums over µ and ǋ will pick out

z = x!y z,x,y ∈IRd

z
λ

= T
λαβ

x
α
y

βαβ∑ = [T
µ1µ2µ3

x
µ4

y
µ5

]
µ2µ4

∑ δ
µ2µ4

δ
µ3µ5

= [T⊗ x⊗y]
µ1µ2µ3 µ4 µ5αβ∑ δ

µ2µ4
δ

µ3µ5

z(1) = C
24,35

T(3) ⊗ x(1) ⊗ y(1){ }
T
λαβ

=
1 if λ=α+β (mod d)
0 otherwise

⎧
⎨
⎪

⎩⎪

11

Typical type of HRR encoding:

	 [B C] 	 → B ⊛ C

	 [A [B C]]	→ A ⊛ [B ⊛ C]

Unbinding (z → x | y) is noisy:
⊛ with pseudo-inverse vector

⇒ Clean-up is essential (replace
retrieved vector with actual one)

Plate 1991: Holographic Reduced Representations (HRRs)

tensor product x⊗y

So how much benefit do we get
in smaller representations by
putting up with significant noise?

with TPR, (linearly independent) vectors of dim d = , can have pairs
xi ⊗ yi (dim = 1000) superimposed up to k = d = 31 & have perfect unbinding
(would require > 3100 units given trend in plot above)

1000

Plate 1994: Superpostion of pairs (xi, yi)

with 1000-dim (random)
vectors, HRR pairs xi ⊛ yi
superimposed for i = 1:k

can unbind accurately up to
k < 10

12

173

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12 14
k (# of vectors stored in trace)

n

Figure D.1: Scaling of n with k for Pr(Error) = 0.01 and m = 1000 in a paired-associates
convolution memory.

= var[x1 y1 x1 z] +
k

i=2

var[xi yi x1 z]

=
2

n
+ k
1

n
=
k + 1

n

The variance of the sum is equal to the sum of the variance because the covariance
between all the terms in the sum is zero (e.g., cov[x1 y1 x1 z, x2 y2 x1 z] = 0).

1 This
is true for the sums of variances for all the signals in this scenario.
Since there are 2k(n 2k) cue-probepairs thatwill generate a signal fromthisdistribution,

the r1 signal must be rejected this many times.
For a threshold t the probability of correctly identifying all the pairs in the trace is:

Pr(All Correct) = Pr(a > t)k + Pr(r1= < t)
2k

+ Pr(r2 < t)
2k(k 1) + Pr(r1 < t)

2k(m 2k)

+ Pr(r0= < t)
m 2k + Pr(r0 < t)

(m 2k)(m 2k 1)/2 (D.1)

The scaling of k with n to give a constant Pr(All Correct) is slightly less than linear. It
is shown in Figure D.1. This scaling is of the same nature as that of the simple superpo-
sition memory, for the same reasons. Likewise, the scaling of Pr(Error) and m with n is
exponential.

1This would not be true if pairs of identical vectors were allowed in the trace, since cov[x2 x2 x1 z,x3
x3 x1 z]=0.

HRR vs. TPR: Size of representations

13

0

512

1024

1536

2048

Plate
 94*

Plate
 00

Eliasmith &
Thagard 01

 Gayler &
Levy 09 [× 0.2]

Hannagan
 et al. 10

 Blouw &
Eliasmith 15

 Crawford, Gingerich
& Eliasmith 13 [× 1e-3]

10009364819.2506420100 25001281000200051220481000

HRR TPR (proper)

256

512

HRR vs. TPR: Size of representations

14

0

512

1024

1536

2048

Plate
 94*

Plate
 00

Eliasmith &
Thagard 01

 Gayler &
Levy 09 [× 0.2]

Hannagan
 et al. 10

 Blouw &
Eliasmith 15

 Crawford, Gingerich
& Eliasmith 13 [× 1e-3]

10009364819.2506420100 25001281000200051220481000

HRR TPR (proper)

256

512

Even if HRRs are not necessarily smaller
than TPRs, do they nonetheless provide a
different solution to the binding problem?

no

EXAMPLE CONTEXTUAL ROLES POSITIONAL ROLES

K runs {K/runner} {K/agent, run/V}

K⊗run K⊗agent + run⊗V

J loves K J⊗loves⊗K J⊗agent + love⊗V + K⊗patient

[A B] A⊗B A⊗r0 + B⊗r1

[A [B C]] A⊗(B⊗C) A⊗r0 ⊕ (B⊗r0 + C⊗r1)⊗r1 ≡
A⊗r0 ⊕ B⊗r01 + C⊗r11

 r01 ≡ r0⊗r1

A
B C

15

➁ Encode filler & role types as vectors, and encode a structural token
S = {fillerk/rolek} as ψ(S) ≡ ∑k fillerk ⊗ rolek

Tensor Product Representations (TPRs)

➀ Define a structural type as {roles}, structural token = {fillers/roles}

Two general classes of roles: [fillers here: J(ay), K(ay)]

EXAMPLE CONTEXTUAL ROLES POSITIONAL ROLES

K runs {K/runner} {K/agent, run/V}

K⊗run K⊗agent + run⊗V

J loves K J⊗loves⊗K J⊗agent + love⊗V + K⊗patient

[A B] A⊗B A⊗r0 + B⊗r1

[A [B C]] A⊗(B⊗C) A⊗r0 ⊕ (B⊗r0 + C⊗r1)⊗r1 ≡
A⊗r0 ⊕ B⊗r01 + C⊗r11

 r01 ≡ r0⊗r1

A
B C

16

➁ Encode filler & role types as vectors, and encode a structural token
S = {fillerk/rolek} as ψ(S) ≡ ∑k fillerk ⊗ rolek

TPR size estimate errors (?): assuming while for linguistic trees I use

Tensor Product Representations (TPRs)

➀ Define a structural type as {roles}, structural token = {fillers/roles}

Two general classes of roles: [fillers here: J(ay), K(ay)]

EXAMPLE CONTEXTUAL ROLES POSITIONAL ROLES

K runs {K/runner} {K/agent, run/V}

K⊗run K⊗agent + run⊗V

J loves K J⊗loves⊗K J⊗agent + love⊗V + K⊗patient

[A B] A⊗B A⊗r0 + B⊗r1

[A [B C]] A⊗(B⊗C) A⊗r0 ⊕ (B⊗r0 + C⊗r1)⊗r1 ≡
A⊗r0 ⊕ B⊗r01 + C⊗r11

 r01 ≡ r0⊗r1

A
B C

17

➁ Encode filler & role types as vectors, and encode a structural token
S = {fillerk/rolek} as ψ(S) ≡ ∑k fillerk ⊗ rolek

TPR size estimate errors (?): assuming while for linguistic trees I use

Tensor Product Representations (TPRs)

➀ Define a structural type as {roles}, structural token = {fillers/roles}

Two general classes of roles: [fillers here: J(ay), K(ay)]

proper TPR: vectors for all fillers and for all roles are linearly independent
⇒ perfect unbinding by inner product: (∑k [fillerk][rolek]T)[rolej

+]= fillerj

where the unbinding vectors satisfy: [rolek]T[rolej
+] = δkj = [1 if k=j else 0]

Application: Semantic Parsing

On-going project at Microsoft Research, with:
• Hao Cheng, Li Deng, Jianfeng Gao, Xiaodong He, Mari Ostendorf

Learn to map Sentence to Meaning = AMR graph
• edge of graph: sing —ARG0 → J encoded as sing⊗ARG0⊗J
• graph: sum of all edges (triples)

18

stay tuned ...

4 facts about Tensor Product Representations (TPRs)

1. Not larger
• In cognitive models examined to date, (noisy) alternative schemes

utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives
• Known proposed solutions to the problem of encoding symbol

structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing
• … can be carried out on fully distributed TPRs via multilinear

operations.

4. Grammatical competence
• The competence to generate binary trees that are grammatical

according to a given Harmonic Grammar is implementable in fully
parallel, fully distributed recurrent networks.

19

264 Paul Smolensky and Bruce Tesar

Figure 8 Table 4

(see Section 5:1.3). The idea is illustrated in Figure 8.

Figure 8. A RAAM network

 If patterns realizing B and C are placed in the two groups of input units at the
bottom of the network in Figure 8, the result is a pattern at the middle layer that is
taken to be the realization of the structure [B C]. This vector has the same number
of elements as the vectors realizing B and C, so it may in turn be placed in the right-
most group of input units. If a pattern representing A is then placed in the leftmost
group of input units, the resulting pattern in the middle layer is the representation of
[A [B C]]: the constituent [B C] has been embedded inside a larger constituent that
also includes A.
 The top half of the network is used to decode trees. If the pattern we just con-
structed realizing [A [B C]] is placed in the middle layer, and the network has
learned its task properly, the leftmost output units will host the vector realizing A
and the rightmost the vector realizing [B C]. This latter vector can then be placed in
the middle layer and the resulting patterns in the two halves of the output layer
should be those for B and C.
 The network is trained using back-propagation learning (Rumelhart, Hinton, and
Williams 1986) so that the top half decodes what the bottom half encodes; when it is
working correctly, the input should be reproduced on the output, despite the com-
pression in between created by the middle layer. This network therefore is trained to
perform autoassociation. Clearly, it is used recursively to encode and decode patterns
for embedded structures.
 While the learning in a RAAM is difficult to analyze, the processing is not. In Fig-
ure 8, we have labeled the weight matrix from the left half of the input layer to the
middle layer ‘M0’ and the matrix from the right half ‘M1’. These multiply their corre-
sponding input vectors x0 and x1 to determine the input to the middle layer, and since
these weights converge on the same set of middle units, these input vectors add:

Decoding of x0 Decoding of x1

 Decoding
subnet

Encoding
subnet

Encoding of [x0 x1]

Encoding of x0 Encoding of x1

 M0 M1

All vectorial symbol structures are Generalized TPRs

includes:
• HRRs
• RNNs/RAAM
• Temporal synchrony
• Gain receptive fields

20

Neuroscience

time

recipient

giver

give-obj

John

Mary

book

Each noun (word) assembly is connected to the main
assembly of each NP assembly with a memory circuit
(initially inactive). Likewise, each verb (word) assembly
is connected to the main assembly of each VP assembly
with a memory circuit (initially inactive). Main assemblies
of the same kind are mutually inhibitory. Each NP and VP
main assembly is connected to a number of subassemblies
with gating circuits. The gating circuits can be selectively
activated by neural control circuits (not shown). For
example, the gating circuits between the main assemblies
and the agent subassemblies can be activated without
activating the gating circuits for the theme subassemblies.
Finally, all subassemblies of the same kind are connected
through memory circuits. For example, each agent subas-
sembly of the NP assemblies is connected to each agent
subassembly of the VP assemblies with a memory circuit
(initially inactive).

A new NP assembly will be activated when a new noun
in a sentence is processed. The NP assembly is arbitrary
but “free,” that is, not already bound to a sentence struc-
ture (i.e., all its memory circuits are inactive).7 The
active NP assembly will remain active until a new NP
assembly is activated by the occurrence of a new noun in
the sentence.8 The selection of a VP assembly is similar.

When several structure assemblies have been activated,
the ones activated first will return to the inactive state
because of the decay of delay activity in their memory
circuits. In this way, only a subset of the structure assem-
blies will be concurrently active and “free” structure
assemblies will always be available. As a result, a limited
set of VP assemblies and NP assemblies is needed in this
architecture.

6.2.1. Connection structure for binding in the
architecture. Figure 5 (right) illustrates that the connec-
tion structure between the agent subassemblies in
Figure 4 consists of a matrix-like array of “columns.”
Each column contains a memory circuit (in both direc-
tions) and the delay assembly that can activate the
memory circuit. Each column also contains a circuit to
activate the delay assembly (Fig. 5, left). This circuit is a
disinhibition circuit that activates the delay assembly if
the neurons Nin and Vin are active at the same time.
These neurons are activated by the respective agent subas-
semblies of an NP assembly and a VP assembly.

In the structure of cat chases mouse (Fig. 2), the NP
assembly for cat (N1) is bound to the VP assembly for
chases (V1) with their agent subassemblies. This binding
process is illustrated in Figure 5. The activated agent
subassembly of the (arbitrary) NP assembly Nx activates
the Nin neurons in a horizontal row of columns. Likewise,
the activated agent subassembly of the (arbitrary) VP
assembly Vi activates the Vin neurons in a vertical row of
columns. The delay assembly in the column on the
intersection of both rows will be activated if the agent
subassemblies of Nx and Vi are active simultaneously,
which results in the binding of these agent subassemblies.

The columns within each horizontal and vertical row
(Fig. 5, right) are mutually inhibitory. Inhibition is
initiated by the active delay assemblies (Fig. 5, left).9

Hence, when the agent subassemblies of Nx and Vi are
bound by an active memory circuit, the active delay assem-
bly in their mutual column inhibits all columns in the same
horizontal and vertical row. This prevents a second

binding of Nx with another VP assembly or of Vi with
another NP assembly, with agent subassemblies.

The connection structure in Figure 5 is illustrative of
every connection structure in the architecture in which
assemblies are (temporarily) bound, including the
binding of V1 and N2 (Fig. 2) with their theme
subassemblies.

In the binding process of the sentence in Figure 2, the
assembly for cat is bound to an arbitrary (“free”) NP
assembly by the activated memory circuit that connects
the two assemblies. Likewise, the assembly for chases is
bound to a VP assembly. The binding of cat as the agent
of chases results from activating the gating circuits
between the NP and VP main assemblies and their agent
subassemblies. The active NP and VP main assemblies
(N1 for cat and V1 for chases) will then activate their
agent subassemblies, which results in the binding together
of these two agent subassemblies (as illustrated in Fig. 5).

Gating circuits will be activated by neural control
circuits. These circuits instantiate syntactic (parsing) oper-
ations based on the active word assemblies and the acti-
vation state of the blackboard. In the case of cat chases
mouse, these circuits will detect that in cat chases (or
N-V), cat is the agent of the verb chases. In response,
they will activate the gating circuits for the agent subas-
semblies of all NPs and VPs. The binding of mouse as
the theme of chases proceeds in a similar manner. We
present an example of a control circuit in section 6.8.4
below.

Figure 5. Connection structure for the agent subassemblies in
Figure 4. Left: a delay assembly in a memory circuit (Fig. 3,
right) is activated when the subassemblies connected by the
memory circuit are concurrently active (using a disinhibition
circuit). Right: Each agent subassembly of all NP assemblies is
connected to each agent subassembly of all VP assemblies with a
specific “column” in an array of columns. Each column consists
of the memory circuits that connect both subassemblies,
together with the circuit in on the left. The active subassembly
of Nx will activate all Nin neurons in its horizontal row of
columns. In the same way, the active subassembly of Vi will
activate all Vin neurons in its vertical row of columns. This
results in the activation of the delay assembly in the memory
circuit in the corresponding column of Nx and Vi. In this way,
the connection structure instantiates a logical AND operation.
Columns in horizontal and vertical rows are mutually inhibitory.
Inhibition is initiated by active delay assemblies in the memory
circuits.

van der Velde & de Kamps: Neural blackboard architectures of combinatorial structures in cognition

46 BEHAVIORAL AND BRAIN SCIENCES (2006) 29:1

• connections:
Neural Blackboard
Architecture

4 facts about Tensor Product Representations (TPRs)

1. Not larger
• In cognitive models examined to date, (noisy) alternative schemes

utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives
• Known proposed solutions to the problem of encoding symbol

structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing
• … can be carried out on fully distributed TPRs via multilinear

operations.

4. Grammatical competence
• The competence to generate binary trees that are grammatical

according to a given Harmonic Grammar is implementable in fully
parallel, fully distributed recurrent networks.

21

Just as the notion ‘computable function’ in symbolic computation
displays its naturalness by reappearing in many guises, superficially
seemingly very different by underlyingly isomorphic, so this result

lends credence to the naturalness of the notion ‘vectorial encoding of
symbolic structure through tensor product representations’

4 facts about Tensor Product Representations (TPRs)

1. Not larger
• In cognitive models examined to date, (noisy) alternative schemes

utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives
• Known proposed solutions to the problem of encoding symbol

structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing
• … can be carried out on fully distributed TPRs via multilinear

operations.

4. Grammatical competence
• The competence to generate binary trees that are grammatical

according to a given Harmonic Grammar is implementable in fully
parallel, fully distributed recurrent networks.

22

a. Linearly computable functions
b. Function-argument application in the λ-calculus
c. Tree Adjunction as in Tree Adjoining Grammar
d. bAbI reasoning

4 facts about Tensor Product Representations (TPRs)

1. Not larger
• In cognitive models examined to date, (noisy) alternative schemes

utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives
• Known proposed solutions to the problem of encoding symbol

structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing
• … can be carried out on fully distributed TPRs via multilinear

operations.

4. Grammatical competence
• The competence to generate binary trees that are grammatical

according to a given Harmonic Grammar is implementable in fully
parallel, fully distributed recurrent networks.

23

a. Linearly computable functions
b. Function-argument application in the λ-calculus
c. Tree Adjunction as in Tree Adjoining Grammar
d. bAbI reasoning

ƒ

Aux V
A

P

by

“Passive	sentence”

V

PA

Meaning	(LF)

Output

Agent

B

D C F by

E GPatient
Aux

F

G B

D C
Patient

Input

W

Few leaders are admired by George Bush admire(George	Bush,	few	leaders)
ƒ

W = Wcons0[Wex1Wex0Wex1] +

 Wcons1[Wcons0(Wex1Wex1Wex1)+Wcons1(Wex0)]

ƒ(s) = cons(ex1(ex0(ex1(s))),
 cons(ex1(ex1(ex1(s))), ex0(s)))

ƒ	is	linearly	neurally	
computable

 symbolic
 ↘ isomorphism
 subsymbolic

5 Formalizing the Principles I: Representation and Processing 197

Section 2.2 (61)

admired by George)—the function ƒ produces the output t { [V [Z [X Y]]] (admire(George,
few leaders)).

Figure 10. Massively parallel symbolic computation in ICS:
PassiveNet

 Figure 10 shows PassiveNet processing this particular example, the input and
output trees being realized through the stratified recursive tensor product represen-
tations developed earlier in this chapter. The symbols Aux, X, Y, and so on, have arbi-

Output

Agent

B

D C F by
E GPatient

Aux

Agent

F

G B

D C
Patient

E

Input

W
25

W = Wcons0[Wex1Wex0Wex1] +

 Wcons1[Wcons0(Wex1Wex1Wex1)+Wcons1(Wex0)]

5 Formalizing the Principles I: Representation and Processing 197

Section 2.2 (61)

admired by George)—the function ƒ produces the output t { [V [Z [X Y]]] (admire(George,
few leaders)).

Figure 10. Massively parallel symbolic computation in ICS:
PassiveNet

 Figure 10 shows PassiveNet processing this particular example, the input and
output trees being realized through the stratified recursive tensor product represen-
tations developed earlier in this chapter. The symbols Aux, X, Y, and so on, have arbi-

Output

Agent

B

D C F by
E GPatient

Aux

Agent

F

G B

D C
Patient

E

Input

W

26

W = Wcons0[Wex1Wex0Wex1] +

 Wcons1[Wcons0(Wex1Wex1Wex1)+Wcons1(Wex0)]

PassiveLF0	=	FM(Wex1F,	FM(Wex0F,	Wex1F))		
PassiveLF1	=	WconsF(FM(Wex1F,	FM(Wex1F,	Wex1F)),	Wex0F)
WPassiveLF	=	WconsF(PassiveLF0,	PassiveLF1)

PassiveInput	=	'[[B	[D	C]]	[[A	F]	[H	[E	G]]]]'
PIf	=	tree2vec(PassiveInput)																																														#	PIf	=	Fock	space	vector	realizing	PassiveInput
PrintTree(PIf)																#	->	[[B	[D	C]]	[[A	F]	[H	[E	G]]]]	

PassiveOutput	=	'[F	[[E	G]	[B	[D	C]]]]'																															#	DESIRED	output
POf	=	tree2vec(PassiveOutput)
PrintTree(POf)														#	->	[F	[[E	G]	[B	[D	C]]]]	

5 Formalizing the Principles I: Representation and Processing 197

Section 2.2 (61)

admired by George)—the function ƒ produces the output t { [V [Z [X Y]]] (admire(George,
few leaders)).

Figure 10. Massively parallel symbolic computation in ICS:
PassiveNet

 Figure 10 shows PassiveNet processing this particular example, the input and
output trees being realized through the stratified recursive tensor product represen-
tations developed earlier in this chapter. The symbols Aux, X, Y, and so on, have arbi-

Output

Agent

B

D C F by
E GPatient

Aux

Agent

F

G B

D C
Patient

E

Input

W

LFf	=	FM(WPassiveLF,	PIf)											#	[output	Fock	vector]	=	[Fock	transf	matrix]	Smes	[input	Fock	vector]

PrintTree(LFf)															#	->	[F	[[E	G]	[B	[D	C]]]]							

testEqual(LFf,	POf)						#	->	True		computed	output	vector	=	desired	output	vector

Aux V
A

P

by

“Passive	sentence”

V

PA

Meaning	(LF)

Output

Agen

B
D C F by

E GPatie
Aux

F

G B
D C

Patie

Input

W

Few leaders are admired by George Bush admire(George	Bush,	few	leaders)
ƒ

W = Wcons0[Wex1Wex0Wex1] +

 Wcons1[Wcons0(Wex1Wex1Wex1)+Wcons1(Wex0)]

ƒ(s) = cons(ex1(ex0(ex1(s))),
 cons(ex1(ex1(ex1(s))), ex0(s)))

ƒ	is	linearly	neurally	
computable

The	funcSons	in	the	following	classes	are	
linearly	neurally	computable
 B	=	base	of	in-place	symbol	mappings

 C	=	closure	under	composiSon	of	
	 										tree-manipulaSng	primiSves	+	B

 P	~	“primiSve	recursive”

C ⊂ P
 g, h	∈	P ⇒ f ∈	P		when

f (s) =

g(s) if atom(s)
h(f (ex0(s)), f (ex1(s))) otherwise

⎧
⎨
⎪

⎩⎪

4 facts about Tensor Product Representations (TPRs)

1. Not larger
• In cognitive models examined to date, (noisy) alternative schemes

utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives
• Known proposed solutions to the problem of encoding symbol

structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing
• … can be carried out on fully distributed TPRs via multilinear

operations.

4. Grammatical competence
• The competence to generate binary trees that are grammatical

according to a given Harmonic Grammar is implementable in fully
parallel, fully distributed recurrent networks.

28

a. Linearly computable functions
b. Function-argument application in the λ-calculus
c. Tree Adjunction as in Tree Adjoining Grammar
d. bAbI reasoning

β Reduction

Basic operation of λ-calculus [function application]: (λx.B)A

29

B
λ x

L = ↦ B
with all x

replaced by A

β-reduce(L,A) = 1+ (A −L ⋅ r

10
+)(L ⋅ r

10
+)+ ⋅⎡

⎣
⎤
⎦(L ⋅ r

1
+)

22

deg
ree

	3	in
	L

β-reduce(L,A) = 1+ (A − x)x+ ⋅⎡

⎣
⎤
⎦B

β Reduction

Basic operation of λ-calculus [function application]: (λx.B)A

30

B
λ x

L = ↦ B
with all x

replaced by A

β-reduce(L,A) = 1+ (A −L ⋅ r

10
+)(L ⋅ r

10
+)+ ⋅⎡

⎣
⎤
⎦(L ⋅ r

1
+)

deg
ree

	3	in
	L

 x ≡ L ⋅ r
10
+

 B ≡ L ⋅ r
1
+

22

ext
ract

s	x
ext

ract
s	B

β-reduce(L,A) = 1+ (A − x)x+ ⋅⎡

⎣
⎤
⎦B

β Reduction

Basic operation of λ-calculus [function application]: (λx.B)A

31

B
λ x

L = ↦ B
with all x

replaced by A

β-reduce(L,A) = 1+ (A −L ⋅ r

10
+)(L ⋅ r

10
+)+ ⋅⎡

⎣
⎤
⎦(L ⋅ r

1
+)

 x ≡ L ⋅ r
10
+

 B ≡ L ⋅ r
1
+

22

dele
tes	

x	at
	eac

h	su
ch	l

oca
Son

inse
rts	

A	a
t	ea

ch	s
uch

	loc
aSo

n

retu
rns

	loc
aSo

n	o
f	all

	x’s

rep
rod

uce
s	B

32

β-reduce(L,A) = 1+ (A − x)⊗ x+ ⋅⎡

⎣
⎤
⎦B

β Reduction

Basic operation of λ-calculus [function application]: (λx.B)A

33

B
λ x

L = ↦ B
with all x

replaced by A

Here:	B encodes a string ⇒ atoms label terminal nodes only.
 Atom x is replaced by an entire tree A (encoding a string).
Next: An atom at an internal (non-terminal) node is replaced by

an entire structure.

β-reduce(L,A) = 1+ (A −L ⋅ r

10
+)⊗ (L ⋅ r

10
+)+ ⋅⎡

⎣
⎤
⎦(L ⋅ r

1
+)

4 facts about Tensor Product Representations (TPRs)

1. Not larger
• In cognitive models examined to date, (noisy) alternative schemes

utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives
• Known proposed solutions to the problem of encoding symbol

structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing
• … can be carried out on fully distributed TPRs via multilinear

operations.

4. Grammatical competence
• The competence to generate binary trees that are grammatical

according to a given Harmonic Grammar is implementable in fully
parallel, fully distributed recurrent networks.

34

a. Linearly computable functions
b. Function-argument application in the λ-calculus
c. Tree Adjunction as in Tree Adjoining Grammar
d. bAbI reasoning

the operation that gives Tree-Adjoining Grammars higher complexity
than context-free grammars, as needed for natural language syntax.

A
ε
≡ a ⋅ rε

+
root symbol of a ("A")

R
A
≡ A

ε
+⋅ t location of A in t

A ≡ t ⋅R
A
+

subtree A in t

R
α
≡ α+⋅a location of α in a

R

A
≡ A

ε
+⋅ t

A

ε
≡ a ⋅ rε

+

t

A

A

a

A

α

t

A

↦,TA:

Tree Adjoining

35

root	symbol	of	a	(“A”)

locaSon	of	A	in	t	

Ini4al	tree Auxiliary	tree

A
ε
≡ a ⋅ rε

+
root symbol of a ("A")

R
A
≡ A

ε
+⋅ t location of A in t

A ≡ t ⋅R
A
+

subtree A in t

R
α
≡ α+⋅a location of α in a

R

α
≡ α+⋅a

A ≡ t ⋅R

A
+

R

A
≡ A

ε
+⋅ t

A

ε
≡ a ⋅ rε

+

t

A

A

a

A

α

t

A

↦,TA:

Tree Adjoining

36

su
bt
re
e	A

	in
	t
	

loc
aS
on
	of
	fo
ot
	no
de
	α
	in
	a
	

Ini4al	tree Auxiliary	tree

TA(t,a) =

t −A⊗R
A

retain all of t unaffected by adj.

+A⊗[R
α
⊗R

A
] reposition [

A
!] in t

+ a⊗R
A

embed a in place of A

−α⊗[R
α
⊗R

A
] remove α from embedded a

A
ε
≡ a ⋅ rε

+
root symbol of a ("A")

R
A
≡ A

ε
+⋅ t location of A in t

A ≡ t ⋅R
A
+

subtree A in t

R
α
≡ α+⋅a location of α in a

R

α
≡ α+⋅a

A ≡ t ⋅R

A
+

R

A
≡ A

ε
+⋅ t

A

ε
≡ a ⋅ rε

+

t

A

A

a

A

α

t

A

↦,TA:

Tree Adjoining

37

rem
ove

s	su
b-t
ree

	A	
fro
m	

t

Ini4al	tree Auxiliary	tree

ne
w	l
oca

So
n	o
f	A
	(o
ld	p

osi
So
n,	R

A,	

shi
_e
d	d
ow
n	b
y	p
osi
So
n	o
f	α
	in	

a,	
Rα)

TA(t,a) =

t −A⊗R
A

retain all of t unaffected by adj.

+A⊗[R
α
⊗R

A
] reposition [

A
!] in t

+ a⊗R
A

embed a in place of A

−α⊗[R
α
⊗R

A
] remove α from embedded a

A
ε
≡ a ⋅ rε

+
root symbol of a ("A")

R
A
≡ A

ε
+⋅ t location of A in t

A ≡ t ⋅R
A
+

subtree A in t

R
α
≡ α+⋅a location of α in a

R

α
≡ α+⋅a

A ≡ t ⋅R

A
+

R

A
≡ A

ε
+⋅ t

A

ε
≡ a ⋅ rε

+

t

A

A

a

A

α

t

A

↦,TA:

Tree Adjoining

38

rem
ove

s	‘α
’	at
	ne
w	l
oca

So
n	o
f	t
‘s	s
ub
tre
e	

em
be
ds	

a	i
n	t

	at
	loc

aS
on
	of
	A	

Ini4al	tree Auxiliary	tree

TA(t,a) =

t −A⊗R
A

retain all of t unaffected by adj.

+A⊗[R
α
⊗R

A
] reposition [

A
!] in t

+ a⊗R
A

embed a in place of A

−α⊗[R
α
⊗R

A
] remove α from embedded a

A
ε
≡ a ⋅ rε

+
root symbol of a ("A")

R
A
≡ A

ε
+⋅ t location of A in t

A ≡ t ⋅R
A
+

subtree A in t

R
α
≡ α+⋅a location of α in a

R

α
≡ α+⋅a

A ≡ t ⋅R

A
+

R

A
≡ A

ε
+⋅ t

A

ε
≡ a ⋅ rε

+

t

A

A

a

A

α

t

A

↦,TA:

Tree Adjoining

39

Ini4al	tree Auxiliary	tree

outer products inner products

Results in a nutshell

40

Key	observa4on:	With	a	single	opera4on	simultane-		
ously	performing	inner	&	outer	products,	can:	
• extract	all	roles	containing	a	given	filler	

(e.g.,	a	variable	symbol	x)
• insert	a	given	filler	(e.g.,	tree)	into	all	such	roles

Single-step	opera4on,	massively	parallel,	from	
distributed	encoding	of	I	to	distributed	encoding	of	O.
But	third-	rather	than	first-order	func4ons	of	the	
input	(higher-order	[mul4pica4ve]	connec4ons	
required	in	net).

4 facts about Tensor Product Representations (TPRs)

1. Not larger
• In cognitive models examined to date, (noisy) alternative schemes

utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives
• Known proposed solutions to the problem of encoding symbol

structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing
• … can be carried out on fully distributed TPRs via multilinear

operations.

4. Grammatical competence
• The competence to generate binary trees that are grammatical

according to a given Harmonic Grammar is implementable in fully
parallel, fully distributed recurrent networks.

41

a. Linearly computable functions
b. Function-argument application in the λ-calculus
c. Tree Adjunction as in Tree Adjoining Grammar
d. bAbI reasoning

Addressing Facebook’s bAbI 20 question-types task (Bordes, yesterday):

Reasoning with TPRs (Lee et al. 2015)

42

ar
X

iv
:su

bm
it/

14
09

86
2

 [c
s.C

L]
 1

9
N

ov
 2

01
5

Under review as a conference paper at ICLR 2016

REASONING IN VECTOR SPACE:
AN EXPLORATORY STUDY OF QUESTION ANSWERING

Moontae Lee∗
Department of Computer Science
Cornell University University
Ithaca, NY 14850, USA
moontae@cs.cornell.edu

Xiaodong He, Wen-tau Yih, Jianfeng Gao & Li Deng
Microsoft Research
Redmond, WA 98052, USA
{xiaohe,scottyih,jfgao,deng}@microsoft.com

Paul Smolensky
Department of Cognitive Science
Johns Hopkins University
Baltimore, MD 21218, USA
smolensky@jhu.edu

ABSTRACT

Question answering tasks have shown remarkable progress with distributed vec-
tor representations. In this paper, we look into the recently proposed Facebook
20 tasks (FB20). Finding the answers for questions in FB20 requires complex
reasoning. Because the previous work on FB20 consists of end-to-end models,
it is unclear whether errors come from imperfect understanding of semantics or
in certain steps of the reasoning. To address this issue, we propose two vector
space models inspired by tensor product representation (TPR) to perform analy-
sis, knowledge representation, and reasoning based on common-sense inference.
We achieve near-perfect accuracy on all categories, including positional reasoning
and pathfinding that have proved difficult for all previous approaches due to the
special two-dimensional relationships identified from this study. The exploration
reported in this paper and our subsequent work on generalizing the current model
to the TPR formalism suggest the feasibility of developing further reasoning mod-
els in tensor space with learning capabilities.

1 INTRODUCTION

Ideal machine learning systems should be capable not only of learning rules automatically from
training data, but also of transparently incorporating existing principles. While an end-to-end frame-
work is suitable for learning without human intervention, existing human knowledge often sheds
light on more profitable ways to leverage data toward better generalization to novel input. Ques-
tion answering (QA) is one of the ultimate tasks in Natural Language Processing (NLP) on which
synergy between the two capabilities could enable better understanding and reasoning.

Recently the Facebook 20 tasks (FB20) were introduced to evaluate complex reading comprehen-
sion via QA (Weston et al. (2015)); these have received considerable attention. Natural question-
answering tasks, for example in WebQuestions tasks (Berant et al. (2013)), require significant un-
derstanding of the semantics, yet reasoning out the answers is relatively simple (e.g., Bordes et al.
(2014); Yih et al. (2015)). In contrast, the synthetic questions in FB20 require complex reason-
ing over multiple computational steps while demanding only minimal semantic understanding. As

∗This research was conducted during a summer internship in Microsoft Research.

1

arXiv 1511.06426

Reasoning with TPRs (extension of Lee et al. 2015)

Early work in progress!*

43

Applied to bAbI problems, e.g.:

John picked up an apple
John went to the office
John went to the kitchen
John dropped the apple

Where was the apple before the kitchen? → the office

Developing a general isomorphism:
	 logical expressions → tensor expressions

• ’A is-at J at time t1’ → @(A, J, t1) → @⊗A⊗J⊗t1

44

knowledge base B =	{facts from story}
	 ∪ {inferred facts}

B = @⊗A⊗J⊗t + ≺⊗t1⊗t2⊗ø + ⋯

to construct B(tk) / B(tk), loop over sentences k in story:to construct B(tk) / B(tk), loop over sentences k in story:
B(tk−1) given B(tk−1) already computed

inferences from Persistence Axiom
 	 ∀k,p∈ P. p(a1, …, am; tk−1)
 	 ⇒ p(a1, …, am; tk)

B(tk) ← B(tk−1) + P(tk)B(tk−1)	
	 P(tk) = Persistence matrix

(over tensors)
update ≺
 add ≺(tk−1, tk)

B(tk) ← B(tk) + Tk

		 Tk = ≺⊗tk−1⊗Ttk−1

		 T = time-update matrix; tk = Ttk−1

add LF of new sentence
	 e.g., John picked up an_Apple

B(tk) ← B(tk) + L(tk)
		 e.g. @⊗A⊗J⊗t1 = L(t1)

repeat until no change:

inferences from Transitivity Axiom:
∀x,y,z,t,p∈T.
p(x, y, t) & p(y, z, t) ⇒ p(x, z, t)

B(tk) ← B(tk) + V[B(tk), B(tk); tk]
 V = multilinear tensor operation

of Transitive Inference

Reasoning with TPRs (extension of Lee et al. 2015)

proposition triplesproposition triplesproposition triplesproposition triplesproposition triplesproposition triplesproposition triples

B ⊗ B ⊗ B
x = Σ p a1 a2 t Σ p a1 a2 t Σ p a1 a2 t

┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃
@ A K ┃ @ A ┃ ≺ ┃ ┃ ø

┃ ┗ ━ ━ ━ ┛ ┃
┗ ━ ━ ━ ━ ━ ━ ━ ━ ━ ━ ┛

℺x.∃t,t′.℺x.∃t,t′.℺x.∃t,t′. @(A, K; t′) && @(A, x; t) && ≺(t, t′)
the x s.t. ∃
times t, t′

the x s.t. ∃
times t, t′

the x s.t. ∃
times t, t′

Apple is at
Kitchen at t′
Apple is at
Kitchen at t′
Apple is at
Kitchen at t′
Apple is at
Kitchen at t′ && Apple is at

x at t
Apple is at

x at t
Apple is at

x at t
Apple is at

x at t && t precedes
t′

t precedes
t′

t precedes
t′

“where is the apple before the kitchen?” →
the x s.t. ∃ times t, t′ s.t. Apple is at Kitchen at t′, A is at x at t, and t precedes t′

Answering a query

45

Penrose Tensor Diagram

proposition triplesproposition triplesproposition triplesproposition triplesproposition triplesproposition triplesproposition triples

B ⊗ B ⊗ B
x = Σ p a1 a2 t Σ p a1 a2 t Σ p a1 a2 t

┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃
@ A K ┃ @ A ┃ ≺ ┃ ┃ ø

┃ ┗ ━ ━ ━ ┛ ┃
┗ ━ ━ ━ ━ ━ ━ ━ ━ ━ ━ ┛

℺x.∃t,t′.℺x.∃t,t′.℺x.∃t,t′. @(A, K; t′) && @(A, x; t) && ≺(t, t′)
the x s.t. ∃
times t, t′

the x s.t. ∃
times t, t′

the x s.t. ∃
times t, t′

Apple is at
Kitchen at t′
Apple is at
Kitchen at t′
Apple is at
Kitchen at t′
Apple is at
Kitchen at t′ && Apple is at

x at t
Apple is at

x at t
Apple is at

x at t
Apple is at

x at t && t precedes
t′

t precedes
t′

t precedes
t′

“where is the apple before the kitchen?” →
the x s.t. ∃ times t, t′ s.t. Apple is at Kitchen at t′, A is at x at t, and t precedes t′

Answering a query

46 	

x
β

2

= B
π

1
α

1
β

1
γ

1

B
π

2
α

2
β

2
γ

2

B
π

3
α

3
β

3
γ

3

@
π

1

A
α

1

K
β

1

@
π

2

A
α

2

≺
π

3

ø
γ

3

δ
γ

1
β

3

δ
γ

2
α

3

Penrose Tensor Diagram

proposition triplesproposition triplesproposition triplesproposition triplesproposition triplesproposition triplesproposition triples

B ⊗ B ⊗ B
x = Σ p a1 a2 t Σ p a1 a2 t Σ p a1 a2 t

┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃
@ A K ┃ @ A ┃ ≺ ┃ ┃ ø

┃ ┗ ━ ━ ━ ┛ ┃
┗ ━ ━ ━ ━ ━ ━ ━ ━ ━ ━ ┛

℺x.∃t,t′.℺x.∃t,t′.℺x.∃t,t′. @(A, K; t′) && @(A, x; t) && ≺(t, t′)
the x s.t. ∃
times t, t′

the x s.t. ∃
times t, t′

the x s.t. ∃
times t, t′

Apple is at
Kitchen at t′
Apple is at
Kitchen at t′
Apple is at
Kitchen at t′
Apple is at
Kitchen at t′ && Apple is at

x at t
Apple is at

x at t
Apple is at

x at t
Apple is at

x at t && t precedes
t′

t precedes
t′

t precedes
t′

“where is the apple before the kitchen?” →
the x s.t. ∃ times t, t′ s.t. Apple is at Kitchen at t′, A is at x at t, and t precedes t′

Answering a query

47

proposition triplesproposition triplesproposition triplesproposition triplesproposition triplesproposition triplesproposition triples

B ⊗ B ⊗ B
x = Σ p a1 a2 t Σ p a1 a2 t Σ p a1 a2 t

┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃
@ A K ┃ @ A ┃ ≺ ┃ ┃ ø

┃ ┗ ━ ━ ━ ┛ ┃
┗ ━ ━ ━ ━ ━ ━ ━ ━ ━ ━ ┛

℺x.∃t,t′.℺x.∃t,t′.℺x.∃t,t′. @(A, K; t′) && @(A, x; t) && ≺(t, t′)
the x s.t. ∃
times t, t′

the x s.t. ∃
times t, t′

the x s.t. ∃
times t, t′

Apple is at
Kitchen at t′
Apple is at
Kitchen at t′
Apple is at
Kitchen at t′
Apple is at
Kitchen at t′ && Apple is at

x at t
Apple is at

x at t
Apple is at

x at t
Apple is at

x at t && t precedes
t′

t precedes
t′

t precedes
t′

“where is the apple before the kitchen?” →
the x s.t. ∃ times t, t′ s.t. Apple is at Kitchen at t′, A is at x at t, and t precedes t′

Answering a query

48

proposition triplesproposition triplesproposition triplesproposition triplesproposition triplesproposition triplesproposition triples

B ⊗ B ⊗ B
x = Σ p a1 a2 t Σ p a1 a2 t Σ p a1 a2 t

┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃
@ A K ┃ @ A ┃ ≺ ┃ ┃ ø

┃ ┗ ━ ━ ━ ┛ ┃
┗ ━ ━ ━ ━ ━ ━ ━ ━ ━ ━ ┛

℺x.∃t,t′.℺x.∃t,t′.℺x.∃t,t′. @(A, K; t′) && @(A, x; t) && ≺(t, t′)
the x s.t. ∃
times t, t′

the x s.t. ∃
times t, t′

the x s.t. ∃
times t, t′

Apple is at
Kitchen at t′
Apple is at
Kitchen at t′
Apple is at
Kitchen at t′
Apple is at
Kitchen at t′ && Apple is at

x at t
Apple is at

x at t
Apple is at

x at t
Apple is at

x at t && t precedes
t′

t precedes
t′

t precedes
t′

“where is the apple before the kitchen?” →
the x s.t. ∃ times t, t′ s.t. Apple is at Kitchen at t′, A is at x at t, and t precedes t′

Answering a query

49

Simplification for bAbI: Lee et al. 2015

For the case of the 20 question categories in bAbI, simplifications are possible
(Moontae Lee): matrix versions of outer/inner product suffice

• @(A, J, t1) → @⊗A⊗J⊗t1 becomes A⊗J = AJT for certain questions because can do
without t, and @ is the only predicate needed

enables virtually 100% performance on all 20 types of questions

• previous SOA: 100% except:
➤ C5: 99.3%, C7: 96.9%, C10: 99%, C17: 72%, C18: 95%, C19: 36%

• from Lee et al. arXiv 1511.06426 paper: 100% except
➤ C5: 99.8%, C16: 99.5%

The good results are less the point than that we can understand how the good
results are obtained and see how the right answers derive from the right reasons
— facilitated by the fact that there is no learning (so far; → representation learning)

50

Josh Tenenbaum (yesterday): “NNs will not have a role to play in reasoning”

Q1: Does this kind of work bear on that conjecture?

Q2: How might it interface with NN representation learning?

4 facts about Tensor Product Representations (TPRs)

1. Not larger
• In cognitive models examined to date, (noisy) alternative schemes

utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives
• Known proposed solutions to the problem of encoding symbol

structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing
• … can be carried out on fully distributed TPRs via multilinear

operations.

4. Grammatical competence
• The competence to generate binary trees that are grammatical

according to a given Harmonic Grammar is implementable in fully
parallel, fully distributed recurrent networks.

51

Any rewrite-rule grammar can be implemented as a Harmonic
Grammar, including Turing-equivalent Type 0 grammars.

☞
TPRs were an important ingredient
in the development of Optimality
Theory & Harmonic Grammar

Want: a general NN architecture ℋ which
• converges to symbolic computation in the limit

From mechanics to cognition

52

states of the mind are collections
of referring symbols assembled

into combinatorial structures that
are governed by the variable-
containing well-formedness
constraints of a ‘grammar’

Want: a general NN architecture ℋ which
• converges to symbolic computation in the limit

of some discreteness hyperparameter vector σ → ∞, e.g.:
➤ dimensionality of activation vectors (|NN|) encoding symbols → ∞
➤ similarity–1 of activation vectors encoding symbols structures → ∞
➤ non-randomness T–1 → ∞
➤ processing time → ∞

• can improve upon
symbolic cognitive theory
➤ w.r.t. ‘macro data’
➤ w.r.t. ‘micro data’

☞	As a hypothesis space ℋ for
learning, can always do at
least as well as symbolic
theory: can choose σ → ∞

From mechanics to cognition

53

Discreteness

↑

θ

↓

space of NNs
≡ {N(θ,σ)}

≡ ℋ

isomorphic
to symbolic
computation

⤶

0 — σ → ∞

Want: a general NN architecture ℋ which
• converges to symbolic computation in the limit

of some discreteness hyperparameter vector σ → ∞, e.g.:
➤ dimensionality of activation vectors (|NN|) encoding symbols → ∞
➤ similarity–1 of activation vectors encoding symbols structures → ∞
➤ non-randomness T–1 → ∞
➤ processing time → ∞

• can improve upon
symbolic cognitive theory
➤ w.r.t. ‘macro data’
➤ w.r.t. ‘micro data’

☞	As a hypothesis space ℋ for
learning, can always do at
least as well as symbolic
theory: can choose σ → ∞

From mechanics to cognition

54

Discreteness

↑

θ

↓

space of NNs
≡ {N(θ,σ)}

≡ ℋ

isomorphic
to symbolic
computation

⤶

0 — σ → ∞

☞
ℋ built on Tensor Product
Representations (TPRs) ⇒
can program (not yet learn)
symbolic computations

Smolensky, P., Goldrick, M. & Mathis, D. 2014. Optimization and
quantization in gradient symbol systems: A framework for
integrating the continuous and the discrete in cognition.
Cognitive Science.

Eliasmith, C. 2013. How to build a brain: A neural architecture for
biological cognition. Oxford University Press.

Smolensky, Paul. 2012. Symbolic functions from neural computation.
Philosophical Transactions of the Royal Society — A: Mathematical,
Physical and Engineering Sciences.

Marcus, G. F. 2001. The algebraic mind: Integrating connectionism and
cognitive science. MIT Press.

Smolensky, P. 1990. Tensor product variable binding and the
representation of symbolic structures in connectionist networks.
Artificial Intelligence. [Reprinted in G. Hinton, (Ed.), 1990,
Connectionist symbol processing, Elsevier/MIT Press.]

NEOLITHIC NIPS
Plate, T. A. 1993. Holographic recurrent networks. In NIPS 5.
Smolensky, P. 1993. Harmonic Grammars for formal languages.

NIPS 5.
Legendre, G., Miyata, Y., & Smolensky, P. 1991. Distributed

recursive structure processing. NIPS 3.
Smolensky, P. 1988. Analysis of distributed representation of

constituent structure in connectionist systems. NIPS 0.

References

55

2006 MIT Press

paul smolensky and géraldine legendre

the harmonic mind

σ⊗

volume 1: cognitive architecture

from neural computation
to optimality-theoretic
grammar

volume 2: linguistic and philosophical implications

σ⊗

from neural computation
to optimality-theoretic
grammar

the harmonic mind

paul smolensky and géraldine legendre

2006 MIT Press

paul smolensky and géraldine legendre

the harmonic mind

σ⊗

volume 1: cognitive architecture

from neural computation
to optimality-theoretic
grammar

volume 2: linguistic and philosophical implications

σ⊗

from neural computation
to optimality-theoretic
grammar

the harmonic mind

paul smolensky and géraldine legendre

That’s all folks!

