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Neural-symbolic integration

What's the proper relationship for such an integration?

Have: a coarse-grained ‘macro’ theory — symbolic computation

® which has many successes

e is running up against its limits states of the mind are collections
of referring symbols assembled

into combinatorial structures that

Cognition, linguistics,

neuroscience

are governed by the variable-

containing well-formedness

constraints of a ‘grammar’




Neural-symbolic integration

What's the proper relationship for such an integration?

Have: a coarse-grained ‘macro’ theory — symbolic computation
® which has many successes

® is running up against its limits state = vector € R”

Want: a more fine-grained ‘micro’ theory state t.ra.nsitions: conti.nuous (esp.
— neural computation quasi-linear) dynamical system

e which will enable us to surpass semantics: distributed

the limits of the existing theory

representations (activity vectors,
not units, have conceptual
e without losing all of its successes interpretation)

Emulate physics: mechanics there s a challenging gap between
symbolic & neural computation
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From mechanics to cognition

Want: a general NN architecture H which

® converges to symbolic computation in the limit of some
discreteness hyperparameter vector o — o, e.g.:

> dimensionality of activation vectors (|NN|) encoding symbols — oo
> similarity ! of activation vectors encoding symbols structures — oo
> non-randomness T-! — oo

> processing time — oo

® can lmprove upon Discreteness
symbolic cognitive theory 7 _isomorphic
» w.r.t. ‘macro data’ space of NNs to symbolic
»  w.r.t. ‘micro data’ O = | N(e,(y)} computa tion
1= As a hypothesis space }{ for | =H J
learning, can always do at i
least as well as symbolic 0 — 0 > o

theory: can choose 0 — oo




From mechanics to cognition

Want: a general NN architecture H which

® converges to symbolic computation in the limit of some
discreteness hyperparameter vector o — o, e.g.:

> dimensionality of activatio = M built on Tensor Product

Representations (IPRs) = K
can program (not yet learn)

> similarity~! of activation ve

» non-randomness T-1 — oo

> processing time — oo symbolic computations

® can improve upon Discreteness
symbolic cognitive theory 7 _isomorphic
» w.r.t. ‘macro data’ space of NNs to symbolic
>  w.r.t. ‘micro data’ 0| =/{ N(G,(y)} computation

1= As a hypothesis space }{ for | =H J
learning, can always do at i
least as well as symbolic 0 — o0 >

theory: can choose 0 — oo




4 facts about Tensor Product Representations (TPRs)

1. Not larger

e In cognitive models examined to date, (noisy) alternative schemes
utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives

e Known proposed solutions to the problem of encoding symbol
structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing

e ... can be carried out on fully distributed TPRs via multilinear
operations.

4. Grammatical competence

e The competence to generate binary trees that are grammatical
according to a given Harmonic Grammar is implementable in fully
parallel, fully distributed recurrent networks.
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B Reality
Minimal

" Published estimate

1,000,000,000
100,000,000

|.25E+08

2.43E+07

A

A

10,000,000
1,000,000

Vector 100,000
dimension 10,000

role dim =3

role dim =2

Marcus
2001

error: orders
of magnﬁmde

Error (?):
Assuming
TPRs are
assembled
identically to
alternatives




So what approach do Marcus

and Eliasmith favor?




Plate 1991: Holographic Reduced Representations (HRRs)
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Plate 1991: Holographic Reduced Representations (HRRs)

Unbinding (z — x | y) is noisy:

Circular convolution: z=x®y
® with pseudo-inverse vector

Yo X0Y0 X1Y0
Y1 X0y1 X1Y1 _—F Clean-up is essential (replace
Y2 - retrieved vector with actual one)

Yo A2Y0

Y1 tensor product x®y
2

X0 X1 X2

Typical type of HRR encoding:
z, = L osXoY s [B C] - Be®C
[A[BC]] - A®[Be®C(]

So how much benefit do we get

T 1 if A=o+B (mod d) in smaller representations by
0 otherwise putting up with significant noise?




Plate 1994: Superpostion of pairs (X;, Vi)
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superimposed for i = 1:k €00 |
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with TPR, (linearly independent) vectors of dim d = /1000, can have pairs
x; ® yi (dim = 1000) superimposed up to k =d = 31 & have perfect unbinding
(would require > 3100 units given trend in plot above)
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Even if HRRs are not necessarily smaller

than TPRs, do they nonetheless provide a
different solution to the binding problem?
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Tensor Product Representations (TPRs)

@ Define a structural type as {roles}, structural token = {fillers/roles}

Two general classes of roles:  [fillers here: J(ay), K(ay)]
EXAMPLE CONTEXTUAL ROLES POSITIONAL ROLES

K runs {K/runner} {K/agent, run/V}

K®run K®agent + run®V
Jloves K  J®loves®K J®agent + love®V + K®patient
[A B] AX®B A®ry + BOry

AR®ro ® (B@I‘o + C®r1)®r1 =
A@I‘o @D B@I‘Ol + C@I‘n
Yo1 = ro®rq

[A[BC]] A®(B®CQC) /2\(
A

@ Encode filler & role types as vectors, and encode a structural token
S={fillery/rol e as P(S) =}, fillerx ® role




Tensor Product Representations (TPRs)

@ Define a structural type as {roles}, structural token = {fillers/roles}
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Tensor Product Representations (TPRs)

@ Define a structural type as {roles}, structural token = {fillers/roles}

Two general classes of roles: [fillers here: J(ay), K(ay)]

4 )

proper TPR: vectors for all fillers and for all roles are linearly independent

= perfect unbinding by inner product: (¥, [filleri][rolex]")[role;"]= filler;

where the unbinding vectors satisfy: [roler][role;"] = ok = [1 if k=] else O]

\_ J

EFPR size estimate errors (?): assuming * while for linguistic trees I use ]




Application: Semantic Parsing

On-going project at Microsoft Research, with:

® Hao Cheng, Li Deng, Jianfeng Gao, Xiaodong He, Mari Ostendorf

Learn to map Sentence to Meaning = AMR graph
® edge of graph: sing —ARGO —] encoded as sing®ARGO®]
® graph: sum of all edges (triples)




4 facts about Tensor Product Representations (TPRs)

1. Not larger

e In cognitive models examined to date, (noisy) alternative schemes
utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives

e Known proposed solutions to the problem of encoding symbol
structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing

e ... can be carried out on fully distributed TPRs via multilinear
operations.

4. Grammatical competence

e The competence to generate binary trees that are grammatical
according to a given Harmonic Grammar is implementable in fully
parallel, fully distributed recurrent networks.




All vectorial symbol structures are Generalized TPRs
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4 facts about Tensor Product Representations (TPRs)

1. Not larger

e In cognitive models examined to date, (noisy) alternative schemes
utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives

e Known proposed solutions to the problem of encoding symbol
structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

Just as the notion ‘computable function” in symbolic computation
displays its naturalness by reappearing in many guises, superficially

seemingly very different by underlyingly isomorphic, so this result
lends credence to the naturalness of the notion ‘vectorial encoding of
symbolic structure through tensor product representations’
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4 facts about Tensor Product Representations (TPRs)

1. Not larger

e In cognitive models examined to date, (noisy) alternative schemes
utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives

e Known proposed solutions to the problem of encoding symbol
structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing

e ... can be carried out on fully distributed TPRs via multilinear
operations.

a. Linearly computable functions

b. Function-argument application in the A-calculus
c. Tree Adjunction as in Tree Adjoining Grammar
d. bAbI reasoning
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4 facts about Tensor Product Representations (TPRs)

1. Not larger

e In cognitive models examined to date, (noisy) alternative schemes
utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives

e Known proposed solutions to the problem of encoding symbol
structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing

e ... can be carried out on fully distributed TPRs via multilinear
operations.

Linearly computable functions
Function-argument application in the A-calculus
Tree Adjunction as in Tree Adjoining Grammar

o N O o

. bAbI reasoning
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f

Few leaders are admired by George Bush > admire(George Bush, few leaders)

f(s) = cons(ex,(exy(ex,(s))), linearly neurally
cons(ex,(ex,(ex,(s))), ex,(s)) computable

W = WconsO[VVexl\erxo\vvexl] +
‘Weons " | Weons O(Wex1Wex1Wexl) +Weons : (V\fexo)]

‘

f Meaning (
symbohc
Isomorphism
subsymbollc

“Passive sentence”




W = Weons,[Wex, Wex, Wex,] +
TX.T\jCOﬂSl[ Wexlwexlwexl

Patient




W = Wconso[VV’exf&WexOWVexll +
Wconsl[ KW’eMKW’exAWEX1 VVGXO ]

“Passive sentence”

PassiveLFO = FM(Wex1F, FM(WexO0F, Wex1F))
PassivelF1 = FM(Wex1F, FM(Wex1F, Wex1F)), WexOF
WPassiveLF = WconsF(PassivelLFO, PassivelLF1)

Patient

Passivelnput = '[[B [D C]] [[A F] [H [E G]]]]'

PIf = (Passivelnput) # PIf = Fock space vector realizing Passivelnput
PrintTree(PIf) #->[[B[DC]]I[[AF][HI[EG]]]]

LFf = FM(WPassivelF, PIf) # [output Fock vector] = [Fock transf matrix] times [input Fock vector]
PrintTree(LFf) #->[F[[EG][B[DC]]]]

PassiveOutput = '[F [[E G] [B [D C]]]]' # DESIRED output
POf = (PassiveOutput)
PrintTree(POf) #->[F[[EG][B[DC]]]]

testEqual(LFf, POf)




f

Few leaders are admired by George Bush > admire(George Bush, few leaders)

f(s) = cons(ex,(exy(ex(s)), linearly neurally
ex,(ex,(ex,(s))), ex,(s))) computable

W = W AV V4 AV V4 AV V4
W = Woons,[Wex, Wex, Wex,] +

V\VA&/YC ons, [ WGX 1WGX 1W8X 1 \\.\\,Ye X0 ]

The functions in the following classes are
linearly neurally computable

B = base of in-place symbol mappings

CcP C = closure under composition of
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4 facts about Tensor Product Representations (TPRs)

1. Not larger

e In cognitive models examined to date, (noisy) alternative schemes
utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives

e Known proposed solutions to the problem of encoding symbol
structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing

e ... can be carried out on fully distributed TPRs via multilinear
operations.

a. Linearly computable functions

b. Function-argument application in the A-calculus
c. Tree Adjunction as in Tree Adjoining Grammar
d. bAbI reasoning
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Basic operation of A-calculus [function application]: (Ax.B)A

with all x
replaced byA

B-reduce(L, A) = [ I+ (A=L-e" )(Lot *}(L- o)

<
6@"0‘6&
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Basic operation of A-calculus [function application]: (Ax.B)A

with all x
replaced byA

duce(L,A) = [ I+ (A —x)x" -]B

e(L,A) = [IH(A L-r )(L-mlj)*}(L.m;)




Basic operation of A-calculus [function application]: (Ax.B)A

with all x
replaced byA

A X B

x=L-r B=L-r’
10 1

B-reduce(L,A) =| 1+ A—X*‘CJB







Basic operation of A-calculus [function application]: (Ax.B)A

with all x
replaced by A

B-reduce(L, A) = 1+ (A — ) ® " -}B
B-reduce(L,A) = [ I+ (A -L- 1(“12 )@ (L- 1(“12 )" }(L 1[”1+ )

Here: B encodes a string = atoms label terminal nodes only.
Atom x is replaced by an entire tree A (encoding a string).

Next: An atom at an internal (non-terminal) node is replaced by
an entire structure.




4 facts about Tensor Product Representations (TPRs)

1. Not larger

e In cognitive models examined to date, (noisy) alternative schemes
utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives

e Known proposed solutions to the problem of encoding symbol
structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing

e ... can be carried out on fully distributed TPRs via multilinear
operations.

a. Linearly computable functions
b. Function-argument application in the A-calculus

c. Tree Adjunction as in Tree Adjoining Grammar
d. bAbI reasoning

the operation that gives Tree-Adjoining Grammars higher complexity

than context-free grammars, as needed for natural language syntax.

34




Tree Adjoining

Initial tree t

TA:

Auxiliary tree

35
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Tree Adjoining

Initial tree ¢ Auxiliary tree t
A
TA:
A
/N
A = a- : : : ii
€ e

root symbol of a ("A"
location of A in't
subtree A int

location of o0 in a




Tree Adjoining

TA:

Initial tree t

Auxiliary tree

ain all of t unaftfected by adj.

reposition [A

- lint
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Tree Adjoining

Initial tree ¢ Auxiliary tree

TA: , A - /A\
/A
/\

root symbol of a ("A"
location of A int

embed a in place of A t-R " subtree Aint

If
K
ab

location of o0 in a

— X1 X RA] remove ¢, from embedded a R
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Tree Adjoining

Initial tree ¢ Auxiliary tree

TA: A /g\ - )
/N /\
/\

A = a-rg R =A%t A=t R™ R =0o"a

TA(t ,a)=
- t—A® RA ) retain all of t unaffected by adj. - Ae = a- ]Pg A root symbol of a ("A"
+ A ®[Ra® RA] reposition [ ---]int RA = A;'[t location of A in't
+a® RA embed a in place of A A=t .RA+ subtree A int
-0 [Ra X RA] remove 0. from embedded a R =a™a location of o in a
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Results in a nutshell

Single-step operation, massively parallel, from
distributed encoding of | to distributed encoding of O.
But third- rather than -order functions of the
input (higher-order [multipicative] connections
required in net).

Key observation: With a single operation simultane-
ously performing inner & outer products, can:
e extract all roles containing a given filler
(e.g., a variable symbol X)
e insert a given filler (e.g., tree) into all such roles

40




4 facts about Tensor Product Representations (TPRs)

1. Not larger

e In cognitive models examined to date, (noisy) alternative schemes
utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives

e Known proposed solutions to the problem of encoding symbol
structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing

e ... can be carried out on fully distributed TPRs via multilinear
operations.

Linearly computable functions
Function-argument application in the A-calculus
Tree Adjunction as in Tree Adjoining Grammar

. bAbI reasoning

a0 o

41




Reasoning with TPRs (Lee et al. 2015)

Addressing Facebook’s bAbI 20 question-types task (Bordes, yesterday):

Under review as a conference paper at ICLR 2016

REASONING IN VECTOR SPACE:
AN EXPLORATORY STUDY OF QUESTION ANSWERING

Moontae L ee*

Department of Computer Science
Cornéll University University
Ithaca, NY 14850, USA

noont ae@s. cornel | . edu

Xiaodong He, Wen-tau Yih, Jianfeng Gao & Li Deng
Microsoft Research

Redmond, WA 98052, USA

{xi aohe, scottyih,jfgao, deng}@ri crosoft.com

Paul Smolensky
Department of Cognitive Science
Johns Hopkins University

Baltimore, MD 21218, USA
smol ensky @ hu. edu arXiv 1511.06426
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R@ﬂSOﬂiﬂg with TPRS (extension of Lee et al. 2015)

Early work in progress!*
Developing a general isomorphism:

logical expressions — tensor expressions

e "Ais-at] attime t;” - @(A, ], t1) > @QARJ®t

Applied to bAbI problems, e.g.:

John picked up an apple
John went to the office
John went to the kitchen
John dropped the apple

Where was the apple before the kitchen? — the office

43




R@ﬂSOﬂiﬂg with TPRS (extension of Lee et al. 2015)

knowledge base B = {facts from story} B = @®ARJRt + <®t;1®t,®e +
U {inferred facts}

to construct B(t) / B(#), loop over sentences k in story:

B(ty-1) given B(t-1) already computed
inferences from Persistence Axiom B(t) < B(tq) + P(t)B(t1)
Vkpe P.p(ay, ..., ay; ti1) P(t;) = Persistence matrix

= p(ay, ..., A, t) (over tensors)

update < B(t;) < B(t) + T}
add <(t1, k) Ty = <@t 1OTH
T = time-update matrix; t; = Tt;_;
add LF of new sentence B(ty) < B(ty) + L(t)
e.g., John picked up an_Apple e.g. @QAQJRt; = LL(t)

repeat until no change:

inferences from Transitivity Axiom: B(t;) < B(t;) + VIB(tr), B(tx); ti]

Vx,y,z,tpel V = multilinear tensor operation
pix,y, t) &py, z, t) = p(x, z, 1) of Transitive Inference

44




Answering a query

X
I

“where is the apple before the kitchen?” —
the x s.t. 3 times £, t’ s.t. Apple is at Kitchen at t', A is at x at f, and ¢ precedes t'

Penrose Tensor Diagram

-------------------------------------------------------------------------------------------------------------

OxALt. @ A, K; t)

the x s.t. d
times ¢, t'

Apple is at
Kitchen at t'

3 B
2 P a a ¢t 2 P a a ¢t

| ||
@Al | <| |
L -

1

& @ A v t) & <(t t)

Apple is at t precedes
& x att & t'
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Answering a query

“where is the apple before the kitchen?” —
the x s.t. 3 times £, t’ s.t. Apple is at Kitchen at t', A is at x at f, and ¢ precedes t'

Penrose Tensor Diagram

-------------------------------------------------------------------------------------------------------------

B ® B ® B
X|=|2 p a a t 2 p a a t 2 p a a t
| | | |
@A K @A | <| |
L J
L _|
™, T Tmopy,  mepy, mopy,
@ AK, @A <@g 0 .0
Tcl (xl Bl TCZ (XZ 3 y3 ’YlBS: ’Y2(X3




Answering a query

“where is the apple before the kitchen?” —
the x s.t. 3 times £, t’ s.t. Apple is at Kitchen at t', A is at x at f, and ¢ precedes t'

L

OxALt. @ A, K; t)

the xs.t. 4  Appleis at
times f, t' = Kitchen at t' 47




Answering a query

“where is the apple before the kitchen?” —
the x s.t. 3 times £, t’ s.t. Apple is at Kitchen at t', A is at x at f, and ¢ precedes t'

B ® 3
X=Zpa|azt Zpalazt
| || | ]

@|A|K @| A |
L
L

Ox3tt. @ A, K ) & @ A, x; 1)

the xs.t. 4  Appleis at &
times f, t' | Kitchen at '

Apple is at
xatt 48




Answering a query

-------------------------------------------------------------------------------------------------------------

OxALt. @ A, K; t)

“where is the apple before the kitchen?” —
the x s.t. 3 times £, t’ s.t. Apple is at Kitchen at t', A is at x at f, and ¢ precedes t'

the x s.t. d
times ¢, t'

Apple is at
Kitchen at t'

B B
2 P a a ¢t 2 P a a ¢t

I ||
@Al | <] |
L I

.

& @ A x; 1) & <(t t

Apple is at t precedes
& xatt & t
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Simplification for bAbI: Lee et al. 2015

For the case of the 20 question categories in bAbI, simplifications are possible
(Moontae Lee): matrix versions of outer/inner product suffice

o @A, J tl) > @®ARJ®t; becomes A®]J = AJT for certain questions because can do
without ¢, and @ is the only predicate needed

enables virtually 100% performance on all 20 types of questions
e previous SOA: 100% except:
»  (C5:99.3%, C7:96.9%, C10: 99%, C17: 72%, C18: 95%, C19: 36%
e from Lee et al. arXiv 1511.06426 paper: 100% except
»  (C5:99.8%, C16: 99.5%

The good results are less the point than that we can understand how the good
results are obtained and see how the right answers derive from the right reasons
— facilitated by the fact that there is no learning (so far; — representation learning)

Josh Tenenbaum (yesterday): “NNs will not have a role to play in reasoning”

Q1: Does this kind of work bear on that conjecture?

Q2: How might it interface with NN representation learning?
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4 facts about Tensor Product Representations (TPRs)

1. Not larger

e In cognitive models examined to date, (noisy) alternative schemes
utilize at least as many neurons as their (noise-free) proper TPR
counterparts

2. No alternatives

e Known proposed solutions to the problem of encoding symbol
structures as activity vectors (which subsumes the variable binding
problem) are all special cases of Generalized TPRs.

3. Full-blown symbol processing

® ... can be carried out on fu
operations.

i TPRs were an important ingredient
in the development of Optimality
4. Grammatical competencefNEO A AT 0 @ r:Naabagkels

e The competence to generate binary trees that are grammatical
according to a given Harmonic Grammar is implementable in fully
parallel, fully distributed recur/\?nt networks.

Any rewrite-rule grammar can be implemented as a Harmonic
Grammar, including Turing-equivalent Type 0 grammars.
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From mechanics to cognition

Want: a general NN architecture H which

® converges to symbolic computation in the limit

states of the mind are collections
of referring symbols assembled
into combinatorial structures that

are governed by the variable-

containing well-formedness

constraints of a ‘grammar’
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From mechanics to cognition

Want: a general NN architecture H which

>
> non-randomness T} — oo
> processing time — oo
® can improve upon
symbolic cognitive theory 7
»  w.r.t. ‘'macro data’

» w.r.t. ‘micro data’ O

1= As a hypothesis space }{ for |
learning, can always do at
least as well as symbolic
theory: can choose 0 — oo

Discreteness

space of NNs

= {M©6,0)}
=

0

— 0 > ©

® converges to symbolic computation in the limit
of some discreteness hyperparameter vector c — o, e.g.:

> dimensionality of activation vectors (|NN|) encoding symbols — oo

similarity ! of activation vectors encoding symbols structures — oo

isomorphic
to symbolic
computation

J
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From mechanics to cognition

Want: a general NN architecture H which

® converges to symbolic computation in the limit
of some discreteness hyperparameter vector c — o, e.g.:

> dimensionality of activatio iy P N A L L te B

similarity™! of activation ve Representations (IPRs) = K&

>
> non-randomness T~1 — oo can program (not yet learn)
>

processing time — oo symbolic computations

® can improve upon Discreteness
symbolic cognitive theory 7 _isomorphic
» w.r.t. ‘macro data’ space of NNs to symbolic
>  w.r.t. ‘micro data’ 0| =/{ N(G,(y)} computation

1= As a hypothesis space }{ for | =H J
learning, can always do at i
least as well as symbolic 0 — o0 >

theory: can choose 0 — oo
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